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Maxwell—Boltzmann distribution

In physics (in particular in statistical
mechanics), the Maxwell-Boltzmann
distribution, or Maxwell(ian)

distribution, is a particular probability
distribution named after James Clerk
Maxwell and Ludwig Boltzmann.

It was first defined and used for describing
particle speeds in idealized gases, where the
particles move freely inside a stationary
container without interacting with one
another, except for very brief collisions in
which they exchange energy and momentum
with each other or with their thermal
environment. The term "particle" in this
context refers to gaseous particles only
(atoms or molecules), and the system of
particles is assumed to have reached
thermodynamic equilibrium.[X] The energies
of such particles follow what is known as
Maxwell-Boltzmann statistics, and the
statistical distribution of speeds is derived by
equating particle energies with Kkinetic
energy.

Mathematically, the Maxwell-Boltzmann
distribution is the chi distribution with three
degrees of freedom (the components of the
velocity vector in Euclidean space), with a
scale parameter measuring speeds in units
proportional to the square root of T'/m (the
ratio of temperature and particle mass).[2]

The Maxwell-Boltzmann distribution is a
result of the kinetic theory of gases, which
provides a simplified explanation of many
fundamental gaseous properties, including
pressure and diffusion.[3] The Maxwell-
Boltzmann distribution applies
fundamentally to particle velocities in three
dimensions, but turns out to depend only on
the speed (the magnitude of the velocity) of
the particles. A particle speed probability
distribution indicates which speeds are more
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likely: a randomly chosen particle will have a | mode V2a
speed selected randomly from the

distribution, and is more likely to be within Variance o2 = a*(37 —8)

one range of speeds than another. The kinetic ™

theory of gases applies to the classical ideal K Skewness 21/2(16 — 5m)

gas, which is an idealization of real gases. In m= (3r—8)32 ~ 0.48569

real gases, there are various effects (e.g., van )

der Waals interactions, vortical flow, Exces% Ny = 4(-96 + 40 — 37°) ~ 0.10816
relativistic speed limits, and quantum kurtosis (37 — 8)?

exchange interactions) that can make their | gnptropy
speed distribution different from the
Maxwell-Boltzmann form. However, rarefied

gases at ordinary temperatures behave very nearly like an ideal gas and the Maxwell speed
distribution is an excellent approximation for such gases. This is also true for ideal plasmas, which
are ionized gases of sufficiently low density.[4]

In(ay27) +7- 5

The distribution was first derived by Maxwell in 1860 on heuristic grounds.[51] Boltzmann later,
in the 1870s, carried out significant investigations into the physical origins of this distribution. The
distribution can be derived on the ground that it maximizes the entropy of the system. A list of
derivations are:

1. Maximum entropy probability distribution in the phase space, with the constraint of
conservation of average energy (H) = E;

2. Canonical ensemble.

Distribution function

For a system containing a large number of identical non-interacting, non-relativistic classical
particles in thermodynamic equilibrium, the fraction of the particles within an infinitesimal
element of the three-dimensional velocity space d 3y, centered on a velocity vector v of magnitude
v, is given by

3 m 1%? mu? 3
f(v)d’v = ok T exp| — d’v,

where:

= m is the particle mass;
= kB is the Boltzmann constant;
» T'is thermodynamic temperature;
= f(v) is a probability distribution function, properly normalized so that [ f(v) d3v over all
velocities is unity.
One can write the element of velocity space as d°v = dv, dvy dv,, for velocities in a standard
Cartesian coordinate system, or as d®v = v? dvd€) in a standard spherical coordinate system,

where d} = sinvg dvg dvg is an element of solid angle and v? = v =2 + v2 + vl



The Maxwellian distribution function for

particles moving in only one direction. if this Distribution of Speeds for Noble Gases at Room Temperature
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The speed probability density functions of the speeds of
a few noble gases at a temperature of 298.15 K (25 °C).
The y-axis is in s/m so that the area under any section of
the curve (which represents the probability of the speed
being in that range) is dimensionless.
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which can be obtained by integrating the three-dimensional form given above over vy and v,.

Recognizing the symmetry of f(v), one can integrate over solid angle and write a probability
distribution of speeds as the function!”]

m 3/2 2 ’I’I’I,’U2
=|—70r 4 — :
f('l)) |: 27Tk]3 T :| o exp ( ZkB T )

This probability density function gives the probability, per unit speed, of finding the particle with a
speed near v. This equation is simply the Maxwell-Boltzmann distribution (given in the infobox)

with distribution parameter @ = 1/kgT’/m . The Maxwell-Boltzmann distribution is equivalent to
the chi distribution with three degrees of freedom and scale parameter a = /kgT'/m .

The simplest ordinary differential equation satisfied by the distribution is:

0 = kgTwf' (v) + f(v) (mv® — 2ksT),

=7 ] (i)

or in unitless presentation:

0=a’zf (z) + (2* — 2d°) f(),

f(1) = a%\/ge@(—é)-

With the Darwin—Fowler method of mean values, the Maxwell-Boltzmann distribution is obtained
as an exact result.




Relaxation to the 2D o

Maxwell-Boltzmann 2
distribution -
For particles confined to move in a plane, the speed A

distribution is given by
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Simulation of a 2D gas relaxing towards a
Maxwell-Boltzmann speed distribution

2
P(s < |v| < s+ds) = ’:Z'; exp (— ;Z;T)ds

This distribution is used for describing systems in equilibrium. However, most systems do not start
out in their equilibrium state. The evolution of a system towards its equilibrium state is governed
by the Boltzmann equation. The equation predicts that for short range interactions, the
equilibrium velocity distribution will follow a Maxwell-Boltzmann distribution. To the right is a
molecular dynamics (MD) simulation in which 900 hard sphere particles are constrained to move
in a rectangle. They interact via perfectly elastic collisions. The system is initialized out of
equilibrium, but the velocity distribution (in blue) quickly converges to the 2D Maxwell-
Boltzmann distribution (in orange).

Typical speeds

The mean speed (v), most probable speed (mode) Vps and root-mean-square speed 4/ (v?) can be
obtained from properties of the Maxwell distribution.

This works well for nearly ideal, monatomic gases like helium, but also for molecular gases like
diatomic oxygen. This is because despite the larger heat capacity (larger internal energy at the
same temperature) due to their larger number of degrees of freedom, their translational kinetic
energy (and thus their speed) is unchanged.8!



= The most probable speed, Vps is

the speed most likely to be
possessed by any molecule (of

Maxwell = Boltzmann Distribution for Solar Atmosphere

the same mass m) in the system o /N,
and corresponds to the maximum .
value or the mode of f(v). To find 08

it, we calculate the derivative Z—i,

set it to zero and solve for v: 06

fiv) (normalized)
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The Maxwell-Boltzmann distribution corresponding to the solar

atmosphere. Particle masses are one proton mass,
my =1.67 x 10727 kg ~ 1 Da, and the temperature is the effective
temperature of the Sun's photosphere, 7= 5800 K. V, V, and

Vims mark the most probable, mean, and root mean square

velocities, respectively. Their values are V=979 km/s, V =
11.05 km/s, and V... = 12.00 km/s.

rms ~

df(v) _ g™ 3/2'0 mu? 1 exof - mv? Y\
dv onkg T %pT P\ "ok ) T

with the solution:

mv%, — 1 = 2kBT_ 2RT
T P N m T\ M

where:

= R is the gas constant;
= M is molar mass of the substance, and thus may be calculated as a product of particle
mass, m, and Avogadro constant, Ny: M = mNy.

For diatomic nitrogen (N,, the primary component of air)[rIOte 1 at room temperature (300 K),
this gives

2.8.31J-mol 'K-1 300K
0.028 kg-mol !

vp R ~ 422m/s.



= The mean speed is the expected value of the speed distribution, setting b = 2# = .

(v) = /oovf('v) dv

0

3/2 poo 3/2
=47 [E] / '036_1""2 dv = 4m [E] i
T 0 T 2b2

4 8kgT 8RT 2
= _— = = —_— = 9
b \/ ™n V M N P
= The mean square speed (v2> is the second-order raw moment of the speed distribution. The

"root mean square speed" vy is the square root of the mean square speed, corresponding to

the speed of a particle with average kinetic energy, setting b = a1 _ _m .

2a2  2kgT’
% 1/2
Urms = <'U2> = l/{; v? f(’l)) d’U]

_ _ —. /3
- N V2

In summary, the typical speeds are related as follows:

vp ~ 88.6% (v) < (v) < 108.5% (v) &~ Vrms-

The root mean square speed is directly related to the speed of sound c in the gas, by

C = Z’U = —f+2v = f+2v
- 3 rms — 3f rms — 2f p>

2
f
molecule. For the example above, diatomic nitrogen (approximating air) at 300 K, f

and

where v = 1 4+ < is the adiabatic index, fis the number of degrees of freedom of the individual gas

— 5[note 2]

7
¢ =4/ 75 Vrms ~ 68% Vrms ~ 84% vp ~ 353 m/s,

the true value for air can be approximated by using the average molar weight of air (29 g/mol),
yielding 347 m/s at 300 K (corrections for variable humidity are of the order of 0.1% to 0.6%).



The average relative velocity

Vrel = (|V1 — V2|) = /d3V1 d*vy [vi — va| f(v1)f(v2)
4 kgT

v\ m
where the three-dimensional velocity distribution is

fo) = [ 2T gy (L
| m P\T2 %7 /-

= V2(v)

The integral can easily be done by changing to coordinatesu = v; — vo and U = %(vl +v2).

Limitations

The Maxwell-Boltzmann distribution assumes that the velocities of individual particles are much
2

. . mc
less than the speed of light, i.e. that T' < ——. For electrons, the temperature of electrons must
B

be T, < 5.93 x 10° K. For distribution of speeds of relativistic particles, see Maxwell-Jiittner
distribution.

Derivation and related distributions

Maxwell-Boltzmann statistics

The original derivation in 1860 by James Clerk Maxwell was an argument based on molecular
collisions of the Kinetic theory of gases as well as certain symmetries in the speed distribution
function; Maxwell also gave an early argument that these molecular collisions entail a tendency
towards equilibrium.[516]091 After Maxwell, Ludwig Boltzmann in 1872[1°) also derived the
distribution on mechanical grounds and argued that gases should over time tend toward this
distribution, due to collisions (see H-theorem). He later (1877)[11] derived the distribution again
under the framework of statistical thermodynamics. The derivations in this section are along the
lines of Boltzmann's 1877 derivation, starting with result known as Maxwell-Boltzmann statistics
(from statistical thermodynamics). Maxwell-Boltzmann statistics gives the average number of
particles found in a given single-particle microstate. Under certain assumptions, the logarithm of
the fraction of particles in a given microstate is linear in the ratio of the energy of that state to the
temperature of the system: there are constants k and C such that, for all 7,

N; 1 E;

The assumptions of this equation are that the particles do not interact, and that they are classical;
this means that each particle's state can be considered independently from the other particles'
states. Additionally, the particles are assumed to be in thermal equilibrium.[t112]

This relation can be written as an equation by introducing a normalizing factor:



N E; (1)
> e (- pr)
where:

= N, is the expected number of particles in the single-particle microstate i,

N is the total number of particles in the system,
E; is the energy of microstate i,

the sum over index j takes into account all microstates,
T is the equilibrium temperature of the system,
= kg is the Boltzmann constant.

The denominator in equation 1 is a normalizing factor so that the ratios IV; : N add up to unity —
in other words it is a kind of partition function (for the single-particle system, not the usual
partition function of the entire system).

Because velocity and speed are related to energy, Equation (1) can be used to derive relationships
between temperature and the speeds of gas particles. All that is needed is to discover the density of
microstates in energy, which is determined by dividing up momentum space into equal sized
regions.

Distribution for the momentum vector

The potential energy is taken to be zero, so that all energy is in the form of kinetic energy. The
relationship between kinetic energy and momentum for massive non-relativistic particles is

2

_ P 2
E_2m (2)

where p2 is the square of the momentum vector p = [p,, Dy P.]- We may therefore rewrite
Equation (1) as:

N, 1 ( P, + 15, +p?,z>

(3)

Nz ks T

where:

= / is the partition function, corresponding to the denominator in equation 1;
= m is the molecular mass of the gas;

= T'is the thermodynamic temperature;

= kg is the Boltzmann constant.

This distribution of V; : N is proportional to the probability density function ﬁ, for finding a
molecule with these values of momentum components, so:



(4)

P2+ P +p?
kaB T

fp Pz, Py, p;) X €Xp (—

The normalizing constant can be determined by recognizing that the probability of a molecule
having some momentum must be 1. Integrating the exponential in equation 4 over all p,, Dy and

D, yields a factor of

oo Pz +p; + 2 3
///_oo exp (— omkaT dp; dpy dp, = [ﬁ,/2kaT]

So that the normalized distribution function is:

1 1% P2 + pi + Pl
) 9 zZ = P — - 6
fo P2y, P) [27rkaT] eXp( omkg T (6)

The distribution is seen to be the product of three independent normally distributed variables p,,
py, and p,, with variance mkgT'. Additionally, it can be seen that the magnitude of momentum

will be distributed as a Maxwell-Boltzmann distribution, with a = /mkgT. The Maxwell—

Boltzmann distribution for the momentum (or equally for the velocities) can be obtained more
fundamentally using the H-theorem at equilibrium within the Kinetic theory of gases framework.

Distribution for the energy

The energy distribution is found imposing

f5(E)dE = f,(p) d®p, (7)

where dsp is the infinitesimal phase-space volume of momenta corresponding to the energy
interval dE. Making use of the spherical symmetry of the energy-momentum dispersion relation

2
E = %, this can be expressed in terms of dF as

d®p = 4x|p|? d|p| = 4vm+/2mE dE. (8)
Using then (8) in (7), and expressing everything in terms of the energy £, we get

1 12 E
BE)dE= |——— — = _\4xm\2mE dE
f5(B) l27rkaT] eXp( kBT) Y Sm

[E] 1 132 E
—9,/= | — _ = \dE
™ |:kBT:| CXP( kBT>d
and finally
E[ 1 1% E
E)=2,/=|— -
B =27 || ew(-g) @



Since the energy is proportional to the sum of the squares of the three normally distributed
momentum components, this energy distribution can be written equivalently as a gamma
distribution, using a shape parameter, kshape = 3/2 and a scale parameter, fgca1e = kT

Using the equipartition theorem, given that the energy is evenly distributed among all three
degrees of freedom in equilibrium, we can also split fg(E)dE into a set of chi-squared
distributions, where the energy per degree of freedom, ¢ is distributed as a chi-squared distribution
with one degree of freedom, 3!

1 €
de = L
fe(€)de = | oo eXp( kBT) ¢

At equilibrium, this distribution will hold true for any number of degrees of freedom. For example,
if the particles are rigid mass dipoles of fixed dipole moment, they will have three translational
degrees of freedom and two additional rotational degrees of freedom. The energy in each degree of
freedom will be described according to the above chi-squared distribution with one degree of
freedom, and the total energy will be distributed according to a chi-squared distribution with five
degrees of freedom. This has implications in the theory of the specific heat of a gas.

Distribution for the velocity vector
Recognizing that the velocity probability density f, is proportional to the momentum probability

density function by
dp 3
3 d3 — . d3
dv=Ffp ( d’u) v

and using p = mv we get

( ) m_1%? m (v + vy + v3)
Folv,vy,v:) = 5o | e - 2ep T

which is the Maxwell-Boltzmann velocity distribution. The probability of finding a particle with
velocity in the infinitesimal element [dv,, dv,, dv.] about velocity v = [v,, v,, v.] is

fV ('Ua;a Uy, 'vz) d’vm d’Uy d’Uz.

Like the momentum, this distribution is seen to be the product of three independent normally
distributed variables v;, vy, and v,, but with variance kBT/m. It can also be seen that the
Maxwell-Boltzmann velocity distribution for the vector velocity [v,, Vs v,] is the product of the
distributions for each of the three directions:

fv (Vg Uy, V) = fo(Vz)fo ('Uy)fv('UZ)



where the distribution for a single direction is

) mv?
1) =\ otaT P\ " 27 )

Each component of the velocity vector has a normal distribution with mean g, = pty, = po, =0
and standard deviation oy, = 0y, = 0y, = 4 /kgT /m, so the vector has a 3-dimensional normal
distribution, a particular kind of multivariate normal distribution, with mean g, =0 and

. kgT . . . .
covariance Y, = (BT) I, where [ is the 3 x 3 identity matrix.

A notable property of the distribution for the velocity vector is direction-independence, which
means that velocity components are normally distributed in any selected direction, not only in
three base directions z, y, and 2.[14]

Distribution for the speed

The Maxwell-Boltzmann distribution for the speed follows immediately from the distribution of
the velocity vector, above. Note that the speed is

v = \/v% -|—v32,+'v§
and the volume element in spherical coordinates
dv, dvy dv, = v? sin 0 dv df d¢ = v dv dS

where ¢ and 6 are the spherical coordinate angles of the velocity vector. Integration of the
probability density function of the velocity over the solid angles df2 yields an additional factor of
4m. The speed distribution with substitution of the speed for the sum of the squares of the vector
components:

2 3/2 2
flv) = \/; [kBiT] v? exp (— ;Z:T).

In n-dimensional space

In n-dimensional space, Maxwell-Boltzmann distribution becomes:

n/2 2
m m|v|
f(v)d'v= [27rkBT] exp(— 2kBT> d"v

Speed distribution becomes:

mv2 n—1
f(v) dv—Aexp(— 2kBT)v dv

where A is a normalizing constant.



The following integral result is useful:

a+1

oo 2 B 15 0o
/ v® exp| — LA, A 2ksT'| 2 / e %2 dg/?
0 2kBT | m 0

a+1

B - oo -1/2
= 2kpT | 2 / e"z22 _ dg
0

| m | 2
a+1 a+1
 [2kpT TF(T)
N m 2

where I'(2) is the Gamma function. This result can be used to calculate the moments of speed
distribution function:
)

oo n—1 mu? )
. e — d n
/(; Vv xp( 2%kpT v - 2kBT ]_"(

+

)= e

/0 v"_lexp(—;,:;z,f)dv L(
()
r()

NS

which is the mean speed itself vayg = (v) = 4/ %'#T

e 2
2 n—1 mv
v° v exp(— ) dv
/(; 2kgT
* 2
/ e exp(— 2’:};’1,) dv
0

kT F(”T”)

(v*) =

IR
. -2kBT- 2 nkBT
N m 2  m

which gives root-mean-square speed Vrms = \/W =4/ ”’“nlzT )

The derivative of speed distribution function:

2

df(v) my my_ n-2
T —Aexp<—2kBT)l—kB—T'v + (n—1)v ] =0

This yields the most probable speed (mode) vp, = 4/(n — 1) kgT/m.

Extension to real gases

The derivations show that the validity of the Maxwell-Boltzmann velocity distribution is limted to
ideal gases. A generalization of the formula to all gases (ideal and real alike) is known, its
derivation starts from the fact that the properties of both ideal and real gases must be independent



of the direction. The formula obtained contains pVy, terms instead of RT', where p is the pressure,

Vi

is the molar volume of the gas sample: [15]

3/2 2
f(v) = [ M ] 4mv? exp (— ;\;’;m)

See also

Quantum Boltzmann equation
Maxwell-Boltzmann statistics
Maxwell-Juttner distribution
Boltzmann distribution
Rayleigh distribution

Kinetic theory of gases

Notes

1.

The calculation is unaffected by the nitrogen being diatomic. Despite the larger heat capacity
(larger internal energy at the same temperature) of diatomic gases relative to monatomic

is still the mean translational

gases, due to their larger number of degrees of freedom,
m

kinetic energy. Nitrogen being diatomic only affects the value of the molar mass M = 28 g/mol.
See e.g. K. Prakashan, Engineering Physics (2001), 2.278 (https://books.google.com/books?id
=6COR1gpAK7EC&pg=SA2-PA278).

. Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees

of freedom additional to the three translational ones, and the vibrational degree of freedom not
accessible.

References

1.

2.

Mand|, Franz (2008). Statistical Physics. Manchester Physics (2nd ed.). Chichester: John
Wiley & Sons. ISBN 978-0471915331.

Young, Hugh D.; Friedman, Roger A.; Ford, Albert Lewis; Sears, Francis Weston; Zemansky,

Mark Waldo (2008). Sears and Zemansky's University Physics: With Modern Physics
(12th ed.). San Francisco: Pearson, Addison-Wesley. ISBN 978-0-321-50130-1.

. Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991,

ISBN 3-527-26954-1 (Verlagsgesellschaft), ISBN 0-89573-752-3 (VHC Inc.)

. N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, San Francisco Press, Inc., 1986,

among many other texts on basic plasma physics

. Maxwell, J.C. (1860 A): lllustrations of the dynamical theory of gases. Part I. On the motions

and collisions of perfectly elastic spheres. The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 4th Series, vol.19, pp.19-32. [1] (https://www.biodiversitylibr
ary.org/item/53795#page/33/mode/1up)

. Maxwell, J.C. (1860 B): lllustrations of the dynamical theory of gases. Part Il. On the process of

diffusion of two or more kinds of moving particles among one another. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 4th Ser., vol.20, pp.21-37. [2] (http
s://www.biodiversitylibrary.org/item/20012#page/37/mode/1up)



10.

1.

12.

13.

14.

15.

. Muller-Kirsten, H. J. W. (2013). "2". Basics of Statistical Physics (https://www.worldcat.org/title/

822895930) (2nd ed.). World Scientific. ISBN 978-981-4449-53-3. OCLC 822895930 (https://se
arch.worldcat.org/oclc/822895930).

. Serway, Raymond A.; Faughn, Jerry S. & Vuille, Chris (2011). College Physics, Volume 1 (http

s://books.google.com/books?id=HLxV-IKYO5IC&pg=PA352) (9th ed.). Cengage Learning.
p. 352. ISBN 9780840068484.

. Gyenis, Balazs (2017). "Maxwell and the normal distribution: A colored story of probability,

independence, and tendency towards equilibrium". Studies in History and Philosophy of
Modern Physics. 57: 53—-65. arXiv:1702.01411 (https://arxiv.org/abs/1702.01411).
Bibcode:2017SHPMP..57...53G (https://ui.adsabs.harvard.edu/abs/2017SHPMP..57...53G).
doi:10.1016/j.shpsb.2017.01.001 (https://doi.org/10.1016%2Fj.shpsb.2017.01.001).

S2CID 38272381 (https://api.semanticscholar.org/CorpusiD:38272381).

Boltzmann, L., "Weitere studien Uber das Warmegleichgewicht unter Gasmolekulen."
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, mathematisch-
naturwissenschatftliche Classe, 66, 1872, pp. 275-370.

Boltzmann, L., "Uber die Beziehung zwischen dem zweiten Hauptsatz der mechanischen
Warmetheorie und der Wahrscheinlichkeitsrechnung respektive den Satzen Uber das
Warmegleichgewicht." Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in
Wien, Mathematisch-Naturwissenschaftliche Classe. Abt. Il, 76, 1877, pp. 373—435. Reprinted
in Wissenschaftliche Abhandlungen, Vol. Il, pp. 164—223, Leipzig: Barth, 1909. Translation
available at: http://crystal.med.upenn.edu/sharp-lab-

pdfs/2015SharpMatschinsky Boltz1877 _Entropy17.pdf Archived (https://web.archive.org/web/2
0210305005604/http://crystal.med.upenn.edu/sharp-lab-pdfs/2015SharpMatschinsky Boltz187
7_Entropy17.pdf) 2021-03-05 at the Wayback Machine

Parker, Sybil P. (1993). McGraw-Hill Encyclopedia of Physics (2nd ed.). McGraw-Hill.
ISBN 978-0-07-051400-3.

Laurendeau, Normand M. (2005). Statistical Thermodynamics: Fundamentals and Applications
(https://books.google.com/books?id=QF6iMewh4KMC). Cambridge University Press. p. 434 (ht
tps://books.google.com/books?id=QF6iMewh4KMC&pg=PA434). ISBN 0-521-84635-8.

Rapp-Kindner, I.; Osz, K.; Lente, G. (2025). "The ideal gas law: derivations and intellectual
background" (https://doi.org/10.1007%2Fs40828-024-00198-9). ChemTexts. 11 (1): 1.
doi:10.1007/s40828-024-00198-9 (https://doi.org/10.1007 %2Fs40828-024-00198-9).

Lente, G. (2025). "Direction independence as a key property to derive a particle speed
distribution in real gases" (https://doi.org/10.1007%2Fs10910-025-01742-9). Journal of
Mathematical Chemistry. 63. doi:10.1007/s10910-025-01742-9 (https://doi.org/10.1007%2Fs10
910-025-01742-9).

Further reading

Tipler, Paul Allen; Mosca, Gene (2008). Physics for Scientists and Engineers: with Modern
Physics (6th ed.). New York: W.H. Freeman. ISBN 978-0-7167-8964-2.

Shavit, Arthur; Gutfinger, Chaim (2009). Thermodynamics: From Concepts to Applications (http
s:/lwww.worldcat.org/title/244177312) (2nd ed.). CRC Press. ISBN 978-1-4200-7368-3.
OCLC 244177312 (https://search.worldcat.org/oclc/244177312).

Ives, David J. G. (1971). Chemical Thermodynamics. University Chemistry. Macdonald
Technical and Scientific. ISBN 0-356-03736-3.

Nash, Leonard K. (1974). Elements of Statistical Thermodynamics. Principles of Chemistry
(2nd ed.). Addison-Wesley. ISBN 978-0-201-05229-9.

Ward, C. A.; Fang, G. (1999). "Expression for predicting liquid evaporation flux: Statistical rate
theory approach". Physical Review E. 59 (1): 429-440. doi:10.1103/physreve.59.429 (https://do
i.org/10.1103%2Fphysreve.59.429). ISSN 1063-651X (https://search.worldcat.org/issn/1063-65
1X).



= Rahimi, P; Ward, C.A. (2005). "Kinetics of Evaporation: Statistical Rate Theory Approach".
International Journal of Thermodynamics. 8 (9): 1-14.

External links

= "The Maxwell Speed Distribution" (http://demonstrations.wolfram.com/TheMaxwellSpeedDistrib
ution/) from The Wolfram Demonstrations Project at Mathworld

Retrieved from "https://en.wikipedia.org/w/index.php?tittie=Maxwell-Boltzmann_distribution&oldid=1300596758"



