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Maxwell–Boltzmann distribution
In physics (in particular in statistical

mechanics), the Maxwell–Boltzmann

distribution, or Maxwell(ian)

distribution, is a particular probability

distribution named after James Clerk

Maxwell and Ludwig Boltzmann.

It was first defined and used for describing

particle speeds in idealized gases, where the

particles move freely inside a stationary

container without interacting with one

another, except for very brief collisions in

which they exchange energy and momentum

with each other or with their thermal

environment. The term "particle" in this

context refers to gaseous particles only

(atoms or molecules), and the system of

particles is assumed to have reached

thermodynamic equilibrium.[1] The energies

of such particles follow what is known as

Maxwell–Boltzmann statistics, and the

statistical distribution of speeds is derived by

equating particle energies with kinetic

energy.

Mathematically, the Maxwell–Boltzmann

distribution is the chi distribution with three

degrees of freedom (the components of the

velocity vector in Euclidean space), with a

scale parameter measuring speeds in units

proportional to the square root of (the

ratio of temperature and particle mass).[2]

The Maxwell–Boltzmann distribution is a

result of the kinetic theory of gases, which

provides a simplified explanation of many

fundamental gaseous properties, including

pressure and diffusion.[3] The Maxwell–

Boltzmann distribution applies

fundamentally to particle velocities in three

dimensions, but turns out to depend only on

the speed (the magnitude of the velocity) of

the particles. A particle speed probability

distribution indicates which speeds are more
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likely: a randomly chosen particle will have a

speed selected randomly from the

distribution, and is more likely to be within

one range of speeds than another. The kinetic

theory of gases applies to the classical ideal

gas, which is an idealization of real gases. In

real gases, there are various effects (e.g., van

der Waals interactions, vortical flow,

relativistic speed limits, and quantum

exchange interactions) that can make their

speed distribution different from the

Maxwell–Boltzmann form. However, rarefied

gases at ordinary temperatures behave very nearly like an ideal gas and the Maxwell speed

distribution is an excellent approximation for such gases. This is also true for ideal plasmas, which

are ionized gases of sufficiently low density.[4]

The distribution was first derived by Maxwell in 1860 on heuristic grounds.[5][6] Boltzmann later,

in the 1870s, carried out significant investigations into the physical origins of this distribution. The

distribution can be derived on the ground that it maximizes the entropy of the system. A list of

derivations are:

1. Maximum entropy probability distribution in the phase space, with the constraint of
conservation of average energy 

2. Canonical ensemble.

For a system containing a large number of identical non-interacting, non-relativistic classical

particles in thermodynamic equilibrium, the fraction of the particles within an infinitesimal

element of the three-dimensional velocity space d 3v, centered on a velocity vector  of magnitude

, is given by

where:

m is the particle mass;

kB is the Boltzmann constant;

T is thermodynamic temperature;

 is a probability distribution function, properly normalized so that  over all

velocities is unity.

One can write the element of velocity space as , for velocities in a standard

Cartesian coordinate system, or as  in a standard spherical coordinate system,

where  is an element of solid angle and .

Distribution function



The speed probability density functions of the speeds of

a few noble gases at a temperature of 298.15 K (25 °C).

The y-axis is in s/m so that the area under any section of

the curve (which represents the probability of the speed

being in that range) is dimensionless.

The Maxwellian distribution function for

particles moving in only one direction, if this

direction is x, is

which can be obtained by integrating the three-dimensional form given above over vy and vz.

Recognizing the symmetry of , one can integrate over solid angle and write a probability

distribution of speeds as the function[7]

This probability density function gives the probability, per unit speed, of finding the particle with a

speed near v. This equation is simply the Maxwell–Boltzmann distribution (given in the infobox)

with distribution parameter The Maxwell–Boltzmann distribution is equivalent to

the chi distribution with three degrees of freedom and scale parameter

The simplest ordinary differential equation satisfied by the distribution is:

or in unitless presentation:

With the Darwin–Fowler method of mean values, the Maxwell–Boltzmann distribution is obtained

as an exact result.



Simulation of a 2D gas relaxing towards a

Maxwell–Boltzmann speed distribution

For particles confined to move in a plane, the speed

distribution is given by

This distribution is used for describing systems in equilibrium. However, most systems do not start

out in their equilibrium state. The evolution of a system towards its equilibrium state is governed

by the Boltzmann equation. The equation predicts that for short range interactions, the

equilibrium velocity distribution will follow a Maxwell–Boltzmann distribution. To the right is a

molecular dynamics (MD) simulation in which 900 hard sphere particles are constrained to move

in a rectangle. They interact via perfectly elastic collisions. The system is initialized out of

equilibrium, but the velocity distribution (in blue) quickly converges to the 2D Maxwell–

Boltzmann distribution (in orange).

The mean speed , most probable speed (mode) vp, and root-mean-square speed  can be

obtained from properties of the Maxwell distribution.

This works well for nearly ideal, monatomic gases like helium, but also for molecular gases like

diatomic oxygen. This is because despite the larger heat capacity (larger internal energy at the

same temperature) due to their larger number of degrees of freedom, their translational kinetic

energy (and thus their speed) is unchanged.[8]

Relaxation to the 2D

Maxwell–Boltzmann

distribution

Typical speeds



The Maxwell–Boltzmann distribution corresponding to the solar

atmosphere. Particle masses are one proton mass,

mp = 1.67 × 10−27 kg ≈ 1 Da, and the temperature is the effective

temperature of the Sun's photosphere, T = 5800 K. , , and

Vrms mark the most probable, mean, and root mean square

velocities, respectively. Their values are  ≈ 9.79 km/s,  ≈

11.05 km/s, and Vrms ≈ 12.00 km/s.

The most probable speed, vp, is
the speed most likely to be
possessed by any molecule (of
the same mass m) in the system
and corresponds to the maximum
value or the mode of f(v). To find

it, we calculate the derivative   

set it to zero and solve for v:

with the solution:

where:

R is the gas constant;

M is molar mass of the substance, and thus may be calculated as a product of particle
mass, m, and Avogadro constant, NA: 

For diatomic nitrogen (N2, the primary component of air)[note 1] at room temperature (300 K),

this gives



The mean speed is the expected value of the speed distribution, setting :

The mean square speed  is the second-order raw moment of the speed distribution. The
"root mean square speed"  is the square root of the mean square speed, corresponding to

the speed of a particle with average kinetic energy, setting :

In summary, the typical speeds are related as follows:

The root mean square speed is directly related to the speed of sound c in the gas, by

where  is the adiabatic index, f is the number of degrees of freedom of the individual gas

molecule. For the example above, diatomic nitrogen (approximating air) at 300 K, [note 2]

and

the true value for air can be approximated by using the average molar weight of air (29 g/mol),

yielding 347 m/s at 300 K (corrections for variable humidity are of the order of 0.1% to 0.6%).



The average relative velocity

where the three-dimensional velocity distribution is

The integral can easily be done by changing to coordinates  and 

The Maxwell–Boltzmann distribution assumes that the velocities of individual particles are much

less than the speed of light, i.e. that . For electrons, the temperature of electrons must

be . For distribution of speeds of relativistic particles, see Maxwell–Jüttner

distribution.

The original derivation in 1860 by James Clerk Maxwell was an argument based on molecular

collisions of the Kinetic theory of gases as well as certain symmetries in the speed distribution

function; Maxwell also gave an early argument that these molecular collisions entail a tendency

towards equilibrium.[5][6][9] After Maxwell, Ludwig Boltzmann in 1872[10] also derived the

distribution on mechanical grounds and argued that gases should over time tend toward this

distribution, due to collisions (see H-theorem). He later (1877)[11] derived the distribution again

under the framework of statistical thermodynamics. The derivations in this section are along the

lines of Boltzmann's 1877 derivation, starting with result known as Maxwell–Boltzmann statistics

(from statistical thermodynamics). Maxwell–Boltzmann statistics gives the average number of

particles found in a given single-particle microstate. Under certain assumptions, the logarithm of

the fraction of particles in a given microstate is linear in the ratio of the energy of that state to the

temperature of the system: there are constants  and  such that, for all ,

The assumptions of this equation are that the particles do not interact, and that they are classical;

this means that each particle's state can be considered independently from the other particles'

states. Additionally, the particles are assumed to be in thermal equilibrium.[1][12]

This relation can be written as an equation by introducing a normalizing factor:

Limitations

Derivation and related distributions

Maxwell–Boltzmann statistics



(1)

where:

Ni is the expected number of particles in the single-particle microstate i,

N is the total number of particles in the system,

Ei is the energy of microstate i,

the sum over index j takes into account all microstates,

T is the equilibrium temperature of the system,

kB is the Boltzmann constant.

The denominator in equation 1 is a normalizing factor so that the ratios  add up to unity —

in other words it is a kind of partition function (for the single-particle system, not the usual

partition function of the entire system).

Because velocity and speed are related to energy, Equation (1) can be used to derive relationships

between temperature and the speeds of gas particles. All that is needed is to discover the density of

microstates in energy, which is determined by dividing up momentum space into equal sized

regions.

The potential energy is taken to be zero, so that all energy is in the form of kinetic energy. The

relationship between kinetic energy and momentum for massive non-relativistic particles is

(2)

where p2 is the square of the momentum vector p = [px, py, pz]. We may therefore rewrite

Equation (1) as:

(3)

where:

Z is the partition function, corresponding to the denominator in equation 1;

m is the molecular mass of the gas;

T is the thermodynamic temperature;

kB is the Boltzmann constant.

This distribution of Ni : N is proportional to the probability density function fp for finding a

molecule with these values of momentum components, so:

Distribution for the momentum vector



(4)

The normalizing constant can be determined by recognizing that the probability of a molecule

having some momentum must be 1. Integrating the exponential in equation 4 over all px, py, and

pz yields a factor of

So that the normalized distribution function is:

   (6)

The distribution is seen to be the product of three independent normally distributed variables ,

, and , with variance . Additionally, it can be seen that the magnitude of momentum

will be distributed as a Maxwell–Boltzmann distribution, with . The Maxwell–

Boltzmann distribution for the momentum (or equally for the velocities) can be obtained more

fundamentally using the H-theorem at equilibrium within the Kinetic theory of gases framework.

The energy distribution is found imposing

(7)

where  is the infinitesimal phase-space volume of momenta corresponding to the energy

interval dE. Making use of the spherical symmetry of the energy-momentum dispersion relation

 this can be expressed in terms of dE as

(8)

Using then (8) in (7), and expressing everything in terms of the energy E, we get

and finally

   (9)

Distribution for the energy



Since the energy is proportional to the sum of the squares of the three normally distributed

momentum components, this energy distribution can be written equivalently as a gamma

distribution, using a shape parameter,  and a scale parameter, 

Using the equipartition theorem, given that the energy is evenly distributed among all three

degrees of freedom in equilibrium, we can also split  into a set of chi-squared

distributions, where the energy per degree of freedom, ε is distributed as a chi-squared distribution

with one degree of freedom,[13]

At equilibrium, this distribution will hold true for any number of degrees of freedom. For example,

if the particles are rigid mass dipoles of fixed dipole moment, they will have three translational

degrees of freedom and two additional rotational degrees of freedom. The energy in each degree of

freedom will be described according to the above chi-squared distribution with one degree of

freedom, and the total energy will be distributed according to a chi-squared distribution with five

degrees of freedom. This has implications in the theory of the specific heat of a gas.

Recognizing that the velocity probability density fv is proportional to the momentum probability

density function by

and using p = mv we get

which is the Maxwell–Boltzmann velocity distribution. The probability of finding a particle with

velocity in the infinitesimal element [dvx, dvy, dvz] about velocity v = [vx, vy, vz] is

Like the momentum, this distribution is seen to be the product of three independent normally

distributed variables , , and , but with variance . It can also be seen that the

Maxwell–Boltzmann velocity distribution for the vector velocity [vx, vy, vz] is the product of the

distributions for each of the three directions:

Distribution for the velocity vector



where the distribution for a single direction is

Each component of the velocity vector has a normal distribution with mean 

and standard deviation , so the vector has a 3-dimensional normal

distribution, a particular kind of multivariate normal distribution, with mean  and

covariance , where  is the 3 × 3 identity matrix.

A notable property of the distribution for the velocity vector is direction-independence, which

means that velocity components are normally distributed in any selected direction, not only in

three base directions , , and .[14]

The Maxwell–Boltzmann distribution for the speed follows immediately from the distribution of

the velocity vector, above. Note that the speed is

and the volume element in spherical coordinates

where  and  are the spherical coordinate angles of the velocity vector. Integration of the

probability density function of the velocity over the solid angles  yields an additional factor of

. The speed distribution with substitution of the speed for the sum of the squares of the vector

components:

In n-dimensional space, Maxwell–Boltzmann distribution becomes:

Speed distribution becomes:

where  is a normalizing constant.

Distribution for the speed

In n-dimensional space



The following integral result is useful:

where  is the Gamma function. This result can be used to calculate the moments of speed

distribution function:

which is the mean speed itself 

which gives root-mean-square speed 

The derivative of speed distribution function:

This yields the most probable speed (mode) 

The derivations show that the validity of the Maxwell–Boltzmann velocity distribution is limted to

ideal gases. A generalization of the formula to all gases (ideal and real alike) is known, its

derivation starts from the fact that the properties of both ideal and real gases must be independent

Extension to real gases



of the direction. The formula obtained contains  terms instead of , where  is the pressure,

 is the molar volume of the gas sample: [15]

Quantum Boltzmann equation
Maxwell–Boltzmann statistics
Maxwell–Jüttner distribution
Boltzmann distribution
Rayleigh distribution
Kinetic theory of gases

1. The calculation is unaffected by the nitrogen being diatomic. Despite the larger heat capacity
(larger internal energy at the same temperature) of diatomic gases relative to monatomic

gases, due to their larger number of degrees of freedom,  is still the mean translational

kinetic energy. Nitrogen being diatomic only affects the value of the molar mass M = 28 g/mol.
See e.g. K. Prakashan, Engineering Physics (2001), 2.278 (https://books.google.com/books?id
=6C0R1qpAk7EC&pg=SA2-PA278).

2. Nitrogen at room temperature is considered a "rigid" diatomic gas, with two rotational degrees
of freedom additional to the three translational ones, and the vibrational degree of freedom not
accessible.
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